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ABSTRACT 

Sustainability of concrete structures can be ensured by deployment of high-tech 
design tools such as numerical simulations. The author has been involved in the 
development of new design techniques based on information technologies, namely, 
numerical simulations, which can bring better expertise to the design process by 
exploiting advances in material engineering and computational mechanics. 
Assessment of sustainability was recently performed to existing nuclear power plants 
in order to  check their safety in more demanding design requirements. It is 
demonstrated, that numerical simulation is well substantiated in cases of complex 
structures, where an unsafe design has a large impact on the environment.  
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INTRODUCTION 

Application of numerical simulations have been recently included in the fib New 
Model Code 2010 (Walraven, 2012) where the appropriate safety formats are 
proposed for this purpose. The paper introduces the features of numerical simulations 
based on non-linear finite element analysis and its potential for design practice. Its 
applicability are demonstrated on the assessment of seismic resistance of existing old 
nuclear power plant in Switzerland based on the pushover analysis.  

NON-LINEAR ANALYSIS  

The recent developments of structural analysis make it possible to consider material 
as well as geometrical non-linear behavior and extend the structural analysis into a 
non-linear range and thus reduce the above mentioned inconsistency. The principles 
of nonlinear analysis based on a finite element method as illustrated  in Fig. 1 are in 
more detail treated in paper  (Cervenka, V.,  2013). For concrete the most important 
material properties to consider are due to a crack propagation in tension and 
confinement effect in compression. These features are successfully modeled by 
constitutive laws based on the fracture mechanics and the theory of plastic flow. 
Material model for concrete in ATENA is based on the smeared crack model for 
tension combined with plasticity model for compression. Model is described in detail 
in the paper by Červenka & Pappanikolaou (2008). The material model formulation 
assumes small strains, and is based on the strain decomposition into elastic (eijε ), 

plastic ( p
ijε ) and fracture (f

ijε ) components. The stress be then described by the 

following rate equations: 
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The constitutive equations of the plastic and fracture
the flow rule governs the evolution of plastic and fracturing strains:
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Fig. 1: Scheme of non

Where pλɺ  is the plastic multiplier rate and 
unified theory of elastic degradation of Carol et al. (1994) it is possible to define analogous 

quantities for the fracturing model, i.e. 

and fg is the potential defin
model. The consistency conditions can be than used to evaluate the change of the plastic and 
fracturing multipliers. 
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Scheme of non-linear finite element analysis 

is the plastic multiplier rate and pg  is the plastic potential function. Following the 
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are hardening/softening moduli for plastic model and fracturing model, 
sents a system of two equations for the two u
fλɺ , and is analogous to the multi-surface plasticity (Simo et 

al. 1988). The details of the model implementation can be found in Č
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are hardening/softening moduli for plastic model and fracturing model, 
sents a system of two equations for the two unknown 

surface plasticity (Simo et 
al. 1988). The details of the model implementation can be found in Červenka & 



Pappanikolaou (2008). The model is using Rankine criterion for tensile fracture with 
exponential softening of Hordijk (1991), (see Fig. 2a). 

 Fig. 2:  Material low for concrete in tension and compression 

The compressive behaviour is modelled by a plasticity model, which is using the 
three parameter surface of Menetrey & Willam (1995) (see Fig. 2b). The softening in 
tension and compression is adjusted using a crack band approach of Bažant & Oh 
(1983). Concrete constitutive model covers also functions related to the shear 
resistance of cracks and reduction of compressive resistance due to cracking, which 
are important for realistic modelling of cracked concrete, Bentz et al. 2006. An 
example of the model validation is shown in Fig. 3 

ASSESSMENT OF SEISMIC RESISTANCE 

The accident in Fukushima Power Plant in Japan in 2011 spurred activities in energy 
industry world-wide and opened questions of safety and sustainability of the existing 
nuclear power plant structures. It is evident that during the life time of existing power 
plants, the world-wide research effort brought a range of innovations useful for the 
seismic design. One on them is the push-over analysis method, which is suggested by 
major design codes but was not a design practice at the time of the constructions of 
old power plants. Today it serves as a simplified method for the assessment of 
seismic resistance The investigated reactor building consists of the concrete internal 
structure, the steel containment and the shield building, i.e. outer wall. More details 
about the shield building dimensions can be found in Cervenka et al., 2012. The 
numerical model consisted of the dome, the reinforcing ring with pre-stressing cables 
and the cylindrical wall. In addition, the steel liner that is attached to the internal 
surface of the shield building was considered as well. For the safety assessment two 
models were considered. The „Median model“ is using median, i.e. average material 
properties and the „Characteristic model“ with properties of the 5% quantile 
properties.  

A typical deformed shape and crack pattern obtained from the semi-static pushover 
analysis are shown in Fig. 4. The pushover curve was calculated up to the point when 
the base shear force dropped below at least 80% of the peak load, see Fig. 5. The 

(a) Tensile softening (Hordijk 1991)   (b) Three paramater criterion for concrete  
                                                                                     (Menetrey & Willam (1995) 



pushover curves are transformed into the acceleration displacement diagram, which 
allows their comparison with the local seismic demand, which is defined by the 
elastic response spectrum. The result shows very high seismic safety. Furthermore, 
the idealized curves were be used by the plant owner for a more detailed semi-
probabilistic analysis and for the calculation of the fragility curves. 

 

The results confirmed a sufficient seismic safety of this old power plant. Two 
pushover curves were calculated for the estimation of median and characteristic 
response. Analogical approach is also applied for the seismic evaluation of other 
buildings in the nuclear power plant complex (see Fig. 6). 

(a) Slab shear test, Jaeger & Marti (2006)               (b) ATENA simulation slab tests,  

   (c) ATENA prediction results of two teams                                   

Fig. 3: Prediction competition of slab shear resistance 



Fig. 4:  Deformed form (left) and crack pattern (right) of 

Fig. 5:  Pushover curves based on elastic response spectrum of the local s

Fig. 6:  Pushover analysis of a

Deformed form (left) and crack pattern (right) of the characteristic 
analysis case. 

Pushover curves based on elastic response spectrum of the local s
demand. 

Pushover analysis of a reinforced concrete building housing the power 
plant control room 

 

characteristic 

 

Pushover curves based on elastic response spectrum of the local seismic 

 

reinforced concrete building housing the power 



CONCLUDING REMARKS 

Advanced simulation tools meet challenges of high structural complexity and 
extreme load actions and offer an exploitation of state-of-the-art numerical 
techniques and material models. The nonlinear pushover analysis using advanced 
material models based on fracture mechanics and plasticity was used to evaluate the 
sustainability and safety of an existing nuclear containment. The results confirmed 
very high seismic safety. The calculated pushover curves for median and 
characteristic response were used for the evaluation of seismic fragility curves. 

The numerical tools and methods applied in this work were developed with the 
support of the Eurostars project SE-Lab E!7521 and project TA01011019 from 
Czech Technological Agency. 
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