
1 INTRODUCTION 

It has been recognized by experimental work by Van 
Mier 1986 and Tatematsu and Nakamura 1997, 2001 
that in compression failure similar size effect as in 
tensile behavior can be observed. In finite element 
modeling of brittle materials such as concrete, the 
compressive behavior is as important as the tensile 
response. The compressive failure is often a critical 
behavior, which controls the ultimate limit state of 
the investigated structure. The regularization tech-
niques for the modeling of cracking in brittle materi-
als have been extensively investigated in the past, 
and various approaches have been proposed such as: 
crack band method, nonlocal averaging, higher order 
continuum theories, etc. All these approaches can be 
applied to the compressive softening as well, how-
ever, it is not usually done, mainly due to the fact 
that the experimental evidence is limited. 

The paper discusses the importance of an appro-
priate modeling of compressive softening in concrete 
structures on several examples with experimental da-
ta involving compressive crushing of concrete. The 
crush band approach is proposed for the modeling of 
the mesh objective energy dissipation during the 
crushing process. The crush band size is calculated 
as a finite element size projected into the direction of 
the minimal principal stress. The crush band size is 
in addition adjusted based on the finite element 
shape and the crush band direction. 

 

One example of practical application will be pre-
sented, which involves modeling of ultimate limit 
states and fatigue states in grouted connection in off-
shore wind farms. In this grouted connection signifi-
cant tensile and compressive stress concentration oc-
curs, which makes it difficult to use standard design 
approaches based on checking the stress values. The 
global assessment based on nonlinear analysis can be 
successfully applied if proper modeling of the non-
linear effects in the high stress concentration zones 
is used. 

2 MATERIAL MODEL FOR CONCRETE 

The emphasis of the paper is on the modeling of 
compressive failure in brittle materials such as con-
crete and reinforced concrete. Compressive failure in 
reinforced concrete structures involves often com-
plex failure mechanism involving cracking, rein-
forcement yielding, bond failure between concrete 
and reinforcement as well as compressive crushing. 
Therefore at least a brief outline of the used material 
model is necessary. The used material model has 
been published in more details in Červenka et. al. 
1998 and Červenka et. al. 2013. 

The material model formulation is based on the 
decomposition of the strain vector into elastic eε , 

plastic pε and fracturing fε strains, which for the in-

cremental nonlinear solution can be written in the 
rate form as 

On finite element modeling of compressive failure in brittle materials 

J. Cervenka & V. Cervenka 
Cervenka Consulting s.r.o., Prague, Czech Republic 

S. Laserna 
ETSIA, Castilla-La Mancha University, Albacete, Spain 

 

 
 

 
 

 ABSTRACT: Modeling of brittle softening materials requires suitable regularization techniques. This has 
been long recognized for the modeling of cracking, i.e tensile failure, in brittle materials such as for instance 
concrete. The crack band approach represents the classical method how to address this problem of proper en-
ergy dissipation in the modeling of the tensile failure in the finite element calculation. The paper presents the 
straightforward extension of this approach for the modeling of compressive failure in brittle materials. This 
approach was first used in Červenka, et. al. 1998, but more rigorous treatment is necessary and is the subject 
of this paper. 
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The stress evolution is described by the formula: 

( )p fσ ε ε ε= − −E ɺ ɺ ɺɺ                              (2) 

In the above E  is elastic stiffness and the two 
unknown strain vectors are defined as: 
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Eq. (3) represents the fracturing model, which 
takes into account the development of tensile cracks, 
while the Eq. (4) corresponds to the plasticity model 
for the modeling of compressive concrete failure. 
These two equations are not independent and must 
be solved by an iterative algorithm, which is de-
scribed in detail in Červenka & Papanikolaou 2008. 

In the fracturing model, Eq.(3), the fracturing 
strain fεɺ  is calculated from the Eq.(2), where σɺ  is 

replaced by the stress in the cracks as defined in 
Eq.(5). T  is the strain transformation matrix for 
transforming the strain vector from the global coor-
dinate system into the local coordinate system 
aligned with cracks in concrete, and fE is the stiff-

ness matrix for the cracks. In the present model, 
maximum three orthogonal cracks can be modeled at 
each point and the matrix fE  has the following 

form: 
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where the prime indicates the stress and strain 
quantities in the local coordinate system in cracked 
concrete. The individual components of the matrix 

fE  are calculated by Eq. (6) using the softening evo-

lution law (Figure 1) for the tensile strength tf , 

which is a function of the crack opening displace-
ment tw . The crack band method of Bažant & Oh 

1983 is used, which allows to relate the crack open-

ing displacement tw  to the fracturing strains fε  

through the crack band size TL  (Figure 1). The shear 

components ij fE  of the matrix fE  are assumed to be 

dependent on the corresponding normal components 
and on the multiplier Fs , which is assumed to be an 

input material parameter.  
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Figure 1: Crack opening law of  Hordijk 1991 and crack band 
LT. 

The elements of the transformation matrix T are 
gradually calculated at the onset of cracking in each 
of the three material directions. This corresponds to 
the fixed crack model, when the crack direction is 
fixed after the initiation. On the other hand, if the 
matrix T is recalculated for each step based on di-
rection of the current principal strains, a rotated 
crack model is recovered. It should be also noted 
that evaluation of the fracturing model, i.e. the 
Eqs.(3),(6) requires an iterative algorithm since fE  

depends fε . This algorithm is described in detail in 

Červenka & Papanikolaou 2008. 
In the plasticity model, Eq.(4), the plastic strain 

rate pεɺ  is calculated from the consistency condition. 

pλ  is the plastic multiplier, and n  and m  are stress 

derivatives of the plastic and potential surface re-
spectively. The plastic surface pF  is defined by the 

three-parameter criterion, (, ,c tf f e),  according to 

Menetrey & Willam 1995 (Figure 2).  
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In the above equations, ( ), ,ξ ρ θ  are the Haigh-

Westergaard stress coordinates and cf  and tf   are 

the compressive strength and tensile strength, re-
spectively. Parameter ( )0.5,1.0e∈  defines the 

roundness of the Menétrey-Willam failure surface, 
with a recommended value e = 0.52. The plastic 
surface is not constant. Its evolution is governed by 
the equivalent plastic strain eqpε (Figure 3): 

( )1 2 3min , ,eqp p p pε ε ε ε=ɺ ɺ ɺ ɺ                                         (8)

where piε  is the i-th component of the principal plas-

tic strains. The hardening is modelled by adjusting 

the compressive strength cf
⌢

, while the softening is 

controlled through the parameter c  
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In the formulas above, cpε  is the value of the plas-

tic strain when the compression strength cf is 

reached in a uni-axial compression test. 0cf  is the 

onset of nonlinear behaviour in compression,dw is 

the critical value of compressive displacement and 

cw  is the crushing displacement analogical to crack 

opening displacement, but with different sign. When 
concrete crushing enters into the softening regime, 
an analogous approach to the crack band model is 
also used for the localization in compression within 
the crushing bandcL . The crushing band cL is calcu-

lated for each finite element as the element size pro-
jected into the direction of the minimal compressive 
stress (Figure 4). This approach is based on the work 
of Van Mier 1986, where it was experimentally 
shown that a unique value of the post-peak critical 

crushing displacement dw was recovered for the 

tested specimens independent of their sizes. 
  The plastic potential (11) defines the direc-

tion of the plastic flow, and is controlled by the pa-
rameter β  , which defines the volumetric change 
during the crushing process: 0β >  means volume 
expansion, 0β <  material compaction, 1β =  mate-
rial volume is preserved 

 
                                                  (11) 

 

1I  is the 1st invariant of stress vector and 2J  is 

the 2nd invariant of deviatoric stress vector. The 
hardening/softening modulus pH  from (4) is defined 

as 
 

                                                                 (12) 
 
The presented model is used in the examples pre-

sented in this paper. 
 

 

 

 

 

 

 

 

 

 

 
Figure 2. Visualization of the three-parameter Menetrey & 
Willam 1995 three-parameter concrete failure criterion. 

 

 

 

 

 

 

 

 

 
Figure 3. Hardening law for the plasticity model for concrete in 
compression. 
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3 MODELING OF COMPRESSIVE SOFTENING 

In the presented model, the softening in compression 
is controlled by the linear law in Figure 4 and Eq. 
(10), in which the parameter c  of the criterion (7)  is 
reduced as a function of the crushing displacement 

cw , which has an analogous meaning to the crack 

opening tw  (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Softening law for the plasticity model for concrete in 
compression. 

Using compression tests of specimens with dif-
ferent sizes it was experimentally documented by 
Van Mier 1986 and Nakamura & Higai 2001 that a 
compressive fracture energy exists. This suggests 
that an analogous approach to the crack band model 
could be adopted also for modeling softening in 
compression by the finite element method. 

This modeling approach to compression softening 
has been already introduced by Cervenka J. et. al. 
1998 and Cervenka V. & Bergmeister 1999. When 
this approach is adopted, the crush band size cL is  

calculated as the projection of the element size into 
the direction of the minimal principal stress. This 
approach can nicely capture the concrete response in 
compression if the size of the finite element is sig-
nificantly larger than the size of the zone of the ex-
pected compressive localization. This is documented 
in Figure 9, which shows the response of Nakamura 
& Higai 2001 experiments of compression cylinders 
with the same cross-sectional area but with different 
lengths (Figure 5). The numerical results in Figure 9 
were calculated by models with only a single finite 
element. This is identical to assuming a macroscopic 
model with only single material point. As can be 
seen in Figure 9, the results correspond very well 
with the experimental evidence, and the size effect is 
correctly reproduced, i.e. the larger specimens exhib-
it more brittle behavior.  

If the same cylindrical tests are, however, mod-
eled with smaller elements (Figure 6) totally incor-
rect response is recovered. In order to recover the 
correct responses as shown in Figure 10, it is neces-

sary to use a value of 150 mmcL = in Eq. (10). Inter-

estingly this value corresponds to the diameter of the 
cylinders, and is also in agreement with the length of 
the damaged zones reported in Nakamura & Higai 
2001, where it approximately corresponds to the di-
ameter of the investigated cylinders. 

Based on this it is proposed to introduce a limit 
on the minimal value for cL . This lim

cL  is equal to the 

minimal dimension of the crushed zone. 

4 VALIDATION 

The assumption of limiting crush band size lim
cL   was 

tested on the same cylindrical tests of Nakamura & 
Higai 2001 (Figure 6) using different mesh sizes 15, 
30 and 60 mm. Later it was applied to the modeling 
of bending rotational capacity of reinforced concrete 
beams (Figure 7).  

The results for the cylindrical tests are reported in 
Figure 10 to Figure 12. It can be seen that the calcu-
lated results correctly reproduce the expected in-
crease of brittleness for larger specimens, but the ac-
curacy deteriorates as the element size increases. 
This is caused by the fact that for element size 60 
mm, there are only 2-3 elements across the specimen 
diameter and in the localization length Lc = 150 mm. 
This model  cannot accurately capture the strain and 
stress localization as shown in Figure 13 and Figure 
14 respectively. 

The proposed method was also verified using the 
reinforced concrete beams tested by Bosco & 
Debenardi 1993. Accurate modelling of compressive 
crushing is important for the prediction of rotational 
capacity of reinforced concrete beams. For beams 
with low reinforcement ratio, the strength and the 
rotational capacity is mainly given by the yielding 
strength of reinforcement and its critical elongation 
at rupture.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Cylindrical specimens for Nakamura & Higai 2001 
tests 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Mesh for cylindrical specimens for Nakamura & 
Higai 2001 tests. 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 7: Geometry of the beam specimens Bosco & 
Debenardi 1993 
 

 
 
 
 
 
 

Figure 8: Typical mesh for the beam specimens with mesh size 
in the middle section 30 mm. 

Table 1: Material parameters used in the validation examples 

Parameter 
Comp. tests 
on cylinders 

Flexural tests 
on beams 

E (MPa) 20 000 22 000 

µµµµ    0,2 0,2 

fc (MPa) 20,0 27,8 

ft (MPa) 1,6 2,2 

εεεεcp (mm/mm) 0,002 0,000933 

GF (N/m) 125,0 55,0 

ββββ    0,5 0,5 

wd (mm) 2,5 2,5 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Response curves for single element analyses for dif-
ferent specimen sizes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Response curves for cylindrical specimens for ele-
ment size 15 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Response curves for cylindrical specimens for ele-
ment size 30 mm. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Response curves for cylindrical specimens for ele-
ment size 60 mm. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 13: Strain localization in cylindrical specimens for ele-
ment size 15 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Stress confinement zones in cylindrical specimens 
for element size 15 mm. 

For beams with high reinforcement ratio, the 
strength as well the rotational capacity is controlled 
by the capacity of the compressed section to absorb 
high compressive strains without significant 
softening. 

The experimental results of Bosco & 
Debenardi 1993 were used to evaluate if the 

proposed model can correctly repoduce the different 
failure modes observed in the experiments, i.e. 
mainly the switch between the reinforcement rupture 
and concrete crushing mode of failure. 

The geometry and reinforcement arrangement of 
the analyzed beams is described in Figure 7. Two 
beam dimensions were considered: small beams with 
the dimension 100x200x2000 mm and larger beams 
with 300x600x6000 mm. For each beam dimension, 
several reinforcement ratios are considered, which 
should demonstrate the switch of the failure mode.  

The typical finite element mesh is shown in Fig-
ure 8. The reinforcement is modeled using the em-
bedded approach and the bond model by Jendele & 
Cervenka 2006. For the both beam types the element 
size in the middle zone was 30 mm. The limiting 
value of lim

cL  can be estimated by the theoretical size 

of the compression rectangle based on the equiva-
lence of forces in the bending reinforcement and in 
the concrete compressed region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Response curves for small beams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Response curves for big beams. 
 



 
 
 
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
(b) 

Figure 17: Failure mode for big beams with low reinforcement 
ratio with reinforcement rupture (a) and high reinforcing  ratio 
with concrete crushing (b). 

The resulting load-displacement graphs are shown 
in Figure 15 and Figure 16 for the small and large 
beams respectively. 

The beams with lower reinforcement ratio failed 
by reinforcement rupture (Figure 17a). This was the 
case of beams T1-2, T8-10. The reinforcement yield 
strength was 565 MPa, and tensile strength was 672 
MPa at the critical strain of 7%. The concrete crush-
ing (Figure 17b) was observed only for the cases 
with the highest reinforcement ratio, i.e. beams T3 
and T11. The results were obtained assuming the 
value of min

cL  38 and 94 mm for T3 and T11 respec-

tively, which is significantly lower than the theoreti-
cal values of 108 and 160 mm for T3 and T11 re-
spectively. The theoretical values of the compression 
zone sizes were calculated assuming the classical 
distribution of stresses in reinforced concrete section 
at the ultimate limit state. The graphs for T3 and T11 
in Figure 15 and Figure 16 on the other hand shows 
slightly too brittle response of the numerical model 
compare to the experimental one. It should be also 
noted that the post-peak softening was not known for 
the used concrete type so the same dw  was assumed 

as in the cylindrical  models from the first validation 
problem. 

The problem of compressive softening is still not 
well understood also from the experimental point of 
view since the dw  values suggested by the two ex-

perimental works by Van Mier 1986 and Nakamura 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

& Higai 2001 are quite different. Van Mier proposes 
the value of 0.5 mm, while the experiments of 
Nakamura & Higai suggests the value of 2.5 mm.  
It is therefore highly recommended to always vali-
date the model on suitable experimental results be-
fore applying it to practical engineering problems. 
The validation should be always performed using  
experiments, which show failure modes that are ex-
pected in the real structure. This reduces the model 
uncertainties and increases the reliability of the nu-
merical simulation. 

5 APLICATION 

Offshore wind farms appear as a fast growing indus-
try in response for demand for renewable energy 
sources and sustainable energy production. Wind 
turbines are installed on the top of offshore steel 
structures located on the sea bed (Figure 18). A tow-
er superstructure is fixed to the foundation piles us-
ing technology of grouted connections, in which the 
ultra high performance concrete (UHPC) is used as a 
grout material. In this technology the grout is sub-
jected to extremely high load actions, which should 
be verified by design. 

The grout material has a high strength comparable 
to steel, but exhibits brittleness and fatigue sensitivi-
ty. Therefore, the design of grouted connection is 
aided by numerical simulations, in which real prop-
erties of grout material obtained from laboratory 
tests are utilized. The applied material model as well 
as the suitable values of the compressive softening 
were validated using the experimental work of An-
ders 2007. Figure 19a shows the finite element 
model of the grouted connection. The blue elements 
represent the high strength concrete grout. On the in-



terior surface of the pile (diameter 3 m, thickness 50 
mm) and on the exterior of the pin (diameter 2.2m, 
thickness 53 mm) the shear strength of the grout is 
improved by shear keys. In this particular case, the 
shear keys are created by welds with the dimension 
of 10x20 mm and the vertical spacing of 350 mm. 
The compressive strength of the grout is 80 MPa. 
The grouted connection design was verified by 
nonlinear analysis for ULS (ultimate limit state) and 
for FLS (fatigue limit state) by global approach 
based on nonlinear analysis. shows the typical crack-
ing pattern in the grout for ULS analysis for the case 
with eccentric and inclined relative pile-pin position. 
The calculated load-displacement curves for few se-
lected load cases are shown in Figure 21. In this pro-
ject, the PSF approach was used for the global as-
sessment for ULS and FLS. It can be observed that 
quite high safety margin (greater than 2.2) was ob-
tained for almost all load cases. The standard design 
approach for the grouted connection for instance by 
EN ISO 19902 is based on empirical formulas  that 
are derived from experimental results with limited 
validity. In GL guideline (2005) a very limited in-
formation is provided for finite element analysis. 
These standard approaches are typically based on 
checking admissible stress values, which is however 
impossible to do for the case of shear keys, where 
high stress concentration occurs. Therefore a global 
approach by nonlinear analysis is a very attractive 
and the most realistic method for the design of 
grouted connections with shear keys. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18. Typical configuration of off-shore wind farms. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b)      (c) 
Figure 19. Grouted connection in a typical jacket supporting 
structure (a), finite element model including shear keys, (b) 
cracking pattern at ULS design load level (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20: Crushing of concrete in the grouted connection at 
failure. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21: Load-displacement curves for grouted connection 
design for ULS/FLS based on global safety factor 

6 CONCLUSIONS 

The paper discusses the importance of suitable regu-
larization technique to be used also for compressive 
softening. This is often neglected, although the prop-
er modeling of concrete response in compression can 
be considered to be even more important in practical 
applications than the modeling of tensile cracking. 
This is mainly due to fact that the reinforced con-
crete design is based on ultimate limit states, where 
the full plasticization of concrete is assumed in com-
pression with rather high values of compressive 
strains, typically up to 3,5‰. 

The paper discusses a regularization technique for 
compression softening, which is analogical to the 
widely used crack band model in tension. The pro-
posed parameter is called crush band, and depends 
on the finite element size in the direction of the min-
imal principal stress. The crush band should be how-
ever limited by some minimal value, which corre-
sponds to the minimal size of the compression zone 
that can develop in the structure perpendicular to the 
direction of the acting minimal principal stress. 

This approach was validated using uni-axial com-
pression tests and by comparing results for the rota-
tional capacity of reinforced concrete beams in flex-
ure. The model is able to capture the main features, 
but proper investigation of the model uncertainties 
should be always performed when applying nonline-
ar analysis to practical engineering problems. 

The presented approach was applied for checking 
the ultimate and fatigue limit states of the grouted 
connection in the offshore wind power generators. 

 
The presented results are based on research per-
formed within the project P105/12/2051 "Model un-
certainties" from Czech science foundation and 
Eurostars project E!7521 SE-Lab. Authors grateful-
ly acknowledge this support 
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